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I. INTRODUCTION

Neutron production via muon spallation is an important process in understanding the

role of terrestrial nuclear processes due to cosmic ray interactions. It is a main background

contribution to low-energy underground experiments, such as searches for proton decay

(Kamiokande) or neutrino oscillations (SNO). At sea level, on the other hand, neutron

production is primarily due to neutron and proton spallation. With increasing depth this

source quickly loses its dominance as its yield is reduced by 3 orders of magnitude at 10

m.w.e. At this depth most of the neutrons are produced by negative muon capture with a

multiplicity of a few per captured neutron. Larger, albeit rarer, neutron bursts are produced

by inelastic muon scattering where the available energy can be large. Assessing the frequency

and size distribution of the bursts is the topic of this study.

The neutron yields from cosmic muon spallation have been measured by several experi-

ments, though with contradictory results [1–4]. Theoretical calculations [4, 5] are hampered

by the fact that secondary neutrons can be produced by hadronic interactions with primary

neutrons (and primary pions). These processes are hard to quantify analytically. Thus

a Monte Carlo treatment is needed to simulate the neutron yields, tracking both the pri-

mary neutrons and secondary neutrons that are produced from interactions with primary

neutrons and pions. Wang et al. [6] have used the Monte Carlo package FLUKA to this

cause, obtaining good agreement with most experiments. However, the source codes for

both FLUKA and its muon physics package are not readily available. To understand the

relative contributions of various muon physical processes that produce terrestrial neutrons,

it is essential to have access to the source codes.

In support of the “Assessment of Long-Dwell, In-Transit Detection System for Cargo

Ships”, Task 6, we have developed an open source, stand-alone, muon physics package

coded as a Fortran90/95 module. It is intended to be used by any Monte Carlo package that

is coded in Fortran, such as MCNPX. This Technical Report addresses the details of this

physics package. The next section describes the formal theory behind muon spallation and

its approximations. In Sect. III we describe our coding logic and list the relevant routines

from the physics package. Section IV gives results of our calculations for primary processes.

We conclude in Sect. V. A forthcoming companion technical report will give results of

simulations that couple this muon physics package with MCNPX. These results will include
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FIG. 1: Feynman diagrams depicting muon spallation (a) and photo-absoprtion (b). In panel (a)

an incoming muon exchanges a virtual photon with a nucleus. Panel (b) shows a real photon being

absorbed by the nucleus. The nucleus subsequently emits neutrons or pions.

the effects of secondary processes, such as neutrons produced via primary pions or primary

neutrons.

II. MUON SPALLATION THEORY

In muon spallation, an incoming muon interacts with a nucleus via an exchange of a

virtual photon. The nucleus subsequently emits neutrons (or pions). Figure 1(a) shows a

Feynman diagram depicting this scenario. The differential cross section for the inclusive

reaction of a charged lepton (see, for example, Ref. [7]), such as the muon, is

dσ

dEfdΩf

=
α2

q4

pf

pi

LµνWµν , (1)

where α is the fine structure constant, pi and pf are the initial and final lepton momenta,

respectively, q is the four-momentum transfer, Lµν is the lepton tensor, and W µν is the

hardronic structure tensor. The lepton tensor is known analytically,

Lµν = 2
[
pµ

i p
ν
f + pν

i p
µ
f + gµν(m2 − pi · pf )

]
, (2)

where m is the lepton mass. The hadronic tensor, on the other hand, depends on nuclear

details that are not know analytically and must be empirically parametrized. It does satisfy

certain symmetries, however, which constrains the parametrization. For example, it must
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satisfy the Ward identity qµWµν = 0, which forces Wµν to take the form

W µν = W1

(
−gµν +

qµqν

q2

)
+

W2

M2

(
pµ − q · p

q2
qµ

)(
pν − q · p

q2
qν

)
, (3)

where p is the incoming four-momentum of the hadron, M its mass, and W1 and W2 are re-

lated to the transverse and longitudinal response functions, respectively. Because of Lorentz

invariance, the response functions can only depend on q2 and q · p, which are independent

variables. With this parametrization, Eq. 1 becomes

dσ

dEfdΩf

=
2α2

q4

pf

pi

(
W1(q

2, q · p) (q2 − 2m2) + W2(q
2, q · p) (2EiEf +

q2

2
)

)
. (4)

Though there are various nuclear models that predict the form of the structure functions

Wi(q
2, q · p), a definitive analytic solution is not known. For extremely relativistic leptons,

it can argued that the longitudinal response function is much smaller than the transverse,

W2 � W1, and that q·p� q2. This is the basis of the Weizsäcker-Williams approximation [8,

9], to be described in Sect. II A. This approximation gives a model-independent description

of the reaction at high lepton (muon) energies.

A necessary ingredient to formulating the Weizsäcker-Williams approximation is to un-

derstand the process shown in Fig. 1(b), where a real photon undergoes photo-absorption

and neutrons or pions are subsequently emitted. The total cross section for this reaction is

σγ(Eγ) =
4πα

Eγ

W1(q
2 = 0, q · p = EγM), (5)

where Eγ is the photon energy and W1 is the same transverse response function used in

Eqs. 3 and 4. See, for example, Ref [9] for a thorough derivation of this cross section. Note

that since this process involves a real photon, the ensuing cross section resides on the q2 = 0

plane of the transverse response function.

A. Weizsäcker-Williams Approximation

For highly relativistic charged particles, it can be shown that the dominant part of the

inelastic cross section grows as 1/q2 for small q2 momentum transfers [9]. From symmetry

arguments, one can establish the following relations as q2 → 0

W2(q
2, q · p) = O(q2), for q2 → 0

W1(q
2, q · p) =

(q · p)2

M2q2
W2(q

2, q · p).
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Thus for small momentum transfers, W1 � W2. Classically, this can be viewed as the Lorentz

contraction of the electric fields along the transverse direction for accelerating charged parti-

cles. The Weizsäcker-Williams approximation (also known as the method of virtual quanta)

exploits the similarity between the fields of a rapidly moving charged particle and the fields

of a pulse of radiation. This similarity allows one to relate the transverse response function

to the total photo-absorption cross section at q2 = 0,

W1(q
2 = 0, q · p) =

√
(q · p)2

(2π)2αM
σγ

(q · p
M

)
, (6)

which is equivalent to Eq. 5 using the relation q · p = EγM . Assuming m � Ei and taking

the leading order in q2, Eq. 4 becomes

dσ

dEfdΩf

=
α

q2

pf

pi

Eγ

2π2
σγ(Eγ). (7)

Following Delorme et al.[5], the solid-angle integral over Ωf can be performed to give

dσ

dEf

=
N(Eγ)σγ(Eγ)

Eγ

, (8)

where

N(Eγ) =
α

π

[
E2

i + E2
f

p2
i

ln

(
EfEi + pipf −m2

mEγ

)
− (Ei + Ef )

2

2p2
i

ln

(
(pi + pf )

2

(Ei + Ef )Eγ

)
− pf

pi

]
.

(9)

Equation 9 can be interpreted as a spectrum of equivalent real photons. Thus the Weizäcker-

Williams approximation relates the differential muon cross section to a spectrum of equiva-

lent real photons and the total photo-absorption cross section. The latter term is generally

more accessible experimentally than the total muon cross section. Figure 2 shows an example

of the equivalent photon spectrum for a certain set of input muon parameters.

In general, the Weizsäcker-Williams approximation only works in regimes where the “off-

shell” behavior of the exchanged photon is small. This requires that the exchanged photon’s

energy be above the ∆-resonance of the nucleon, which is approximately 300 MeV. Below this

threshold, it is expected that neutron production due to muon spallation is small compared

to neutron production due to muon bremsstrahlung[5, 6].

B. Photo-Absorption Model

Though experimental data of photo-absorption cross sections are readily available for

various nuclei, we have adopted the generalized vector dominance (GVD) model as described
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FIG. 2: Spectrum of real photons for final muon relativistic energy Ef =
√

m2 + p2
f = 2 GeV.

The energy of the exhanged photon is E (the x axis), and the initial muon relativistic energy

Ei =
√

m2 + p2
i is changed accordingly.

in, for example, Bezrukov and Bugaev[10] to estimate these cross sections. This model gives

the total photo-absorption cross section on any nucleus via a closed formula. Thus we avoid

the need for storage of experimental data and interpolation routines on the data.

A formal description of the GVD model is beyond the scope of this report, but we list

some of its important features: a) it incorporates nucleon shadowing (a well established

physical effect), where the total photo-absorption cross section σγA is smaller than Aσγn,

where σγn refers to the total photo cross section on an individual nucleon; b) it uses an

optical model of the nucleus that incorporates an off-diagonal GVD model with ρ-meson

finite-width corrections; and c) it takes into account the growth of hadron cross sections

with energy. The cross section in µb on nucleus of atomic number A with photon energy E

in GeV is given by

σγA(E) = Aσγn(E)(.75G(x) + .25), (10)
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FIG. 3: Differential cross section as a function of outgoing muon relativistic energy E (Eq. 8) for

Carbon and Iron. In both cases, the incoming muon relativistic energy was held at 2 GeV.

where

x = .00282A1/3σγn(E)

G(x) =
3

x3

(
x2

2
− 1 + e−x(1+x)

)
,

and the photo-nucleon cross section, σγn, is approximated by (in µb)

σγn(E) = 114.3 + 1.647 ln2(0.0213E).

Equation 10 used with Eq. 8 gives the differential cross section of the muon with respect

to the outgoing muon energy. Figure 3 shows this quantity for Carbon and Iron. This

function is sampled stochastically to obtain the outgoing muon energy, and thus the photon

energy transfer to the nucleus.

The total muon cross section is obtained by integrating Eq. 8 over outgoing muon energies,
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FIG. 4: Total muon cross section (in µb) for Carbon and Iron as calculated by the Weizsäcker-

Williams approximation as a function of incoming muon kinetic energy.

or equivalently, over appropriate exchanged photon energies,

σ(Ei) =

∫ Ei−m

E∆

dEγ
N(Eγ)σγ(Eγ)

Eγ

, (11)

where Ei is the incoming muon relativisitc energy, Eδ is the delta-resonance energy, and m

is the muon mass. Figure 4 shows the total cross section for Carbon and Iron for a range of

incoming muon kinetic energies.

C. Neutron and Pion Multiplicities

The average particle multiplicity m, as obtained via the Weizsäcker-Williams approxima-

tion, is given by the expression

m(Ei) =

∫ Ei−mµ

E∆
dEγ

N(Eγ)[m̄(Eγ)σγ(Eγ)]

Eγ∫ Ei−mµ

E∆
dEγ

N(Eγ)σγ(Eγ)

Eγ

, (12)

where m̄(Eγ) is the multiplicity of the same particle due to photo-production, Ei is the

relativistic incoming muon energy, mµ is the rest mass of the muon, and E∆ is the energy
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FIG. 5: Neutron and pion average multiplicities for Carbon (a) and Lead (b).

of the ∆ resonance.

For pion multiplicities, we follow Delorme et al. [5] in constructing [m̄(Eγ)σγ(Eγ)]. This

quantity is obtained empirically by first constructing the branching ratio br(Eγ) for photo

pion-production from a single nucleon (i.e proton) from existing experimental data [11].

Here it is assumed that the branching ratio for photo production of π+ is the same as π−

due to the approximate isospin invariance at large photon energies. The multiplicty for

photo pion-production off of a nucleus is obtained by multiplying the nucleon br(Eγ) by the

photo-absorption cross section for the entire nucleus, as given by Eq. 10.

We follow Allkofer and Andresen[4] to obtain neutron multiplicities. Here direct experi-

mental data of the quantity [m̄(Eγ)σγ(Eγ)] is used[12], as well as a modification of the virtual

quanta spectrum N(Eγ) given by Kessler[13]. The data is available for a select set of nuclei.

For nuclei in which there is no experimental data, the quantity [m̄(Eγ)σγ(Eγ)] is interpo-

lated from existing data. At high energies it is assumed that the value of m̄(E) scales as

E1/4, which seems to give good agreement with existing experimental neutron multiplicities

due to muon spallation on Lead [4].

In Fig. 5 we show the average neutron and pion multiplicities on Carbon and Iron. Note

the relative insensitivity of the pion multiplicity in the two cases.
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III. CODE LOGIC AND IMPLEMENTATION

The muon physics package is coded as a Fortran90 module. It is self-contained. The

minimal routines needed to access this package are

double function sigmaMuA_kin(A,Ein)

subroutine scatter_muon(A,Z,Ein,Eout,m,particle_flag)

subroutine get_energies_angle_neutron(n,energy,cos_theta,phi)

subroutine get_energies_angle_pion(n,energy,cos_theta,phi).

The function sigmaMuA kin() takes as input the atomic number A (integer) of the target

nucleus and the incoming muon kinetic energy Ein (double) in MeV and returns the total

muon cross section as calculated using the Weizsäcker-Williams approximation described

in Sect. II A. It is a stand-alone function in that it does not require any initializations or

previous calls of other functions.

The subroutine scatter muon() takes as input the atomic number A (integer) and proton

number Z (integer) of the target nucleus as well as the incoming muon kinetic energy Ein

(double) in MeV. It returns particle flag (integer) and m (integer). The former can take on

only three integer values and is used to tell which type of particle is produced in the reaction:

-1 for negative pions, 0 for neutrons, and 1 for positive pions. The returned integer m gives

the number of the corresponding particles that is produced. It is also a stand-alone routine,

needing no previous initializations or function calls. Note that this routine will only give

one type of emitted particle during a reaction, and not a mixture of particles (e.g. pions and

neutrons produced at the same time). This could be an added feature in future modifications

of this package.

Given the particle type that is returned in particle flag, the corresponding call to

either get energies angles neutron() or get energies angles pion() should be made.

Both these routines need scatter muon() to be called first. These routines take as input

the integer n representing the nth emitted particle, where 1 ≤ n ≤ m. It returns the kinetic

energy (double) in MeV, the cosine of the angle relative to the incoming muon direction

cos theta (double), and the azimuthal angle phi.
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When scatter muon() is called, it first converts the kinetic energy of the incoming muon

to a relativistic energy through the relation

Ei = mµ

√
1 + 2Ein/mµ,

where we have assumed natural units (c = 1). It then checks to see if a muon interaction

is kinematically allowed. Since we only apply the Weizsäcker-Williams approximation at

photon energies above the ∆-resonance E∆, we must have Ei ≥ mµ + E∆. If this is not

satisfied, then the reaction does not occur and Eout is set equal to Ein and m is set to zero.

The routine subsequently exits.

If the reaction is kinematically allowed, the routine then extracts an outgoing muon

energy Ef by sampling the differential cross section, an example of which was shown in

Fig. 3. This sampling procedure is performed by a simple rejection method [14] using a

linear distribution as the envelope function. Thus the energy of the exchanged photon Eγ

is determined as Eγ = Ei − Ef .

To determine whether pions or neutrons are produced during the reaction, the routine

calculates mn and mπ and calculates the ratio mn/(mn + mπ). It then generates a random

number between 0 and 1 and compares this number to this ratio. If the number is less than

the ratio, neutrons are produced, otherwise pions are produced. In the latter case another

random number is sampled between 0 and 1 and compared to the ratio Z/A. If it is less than

this ratio, then π− particles are produced, otherwise π+ particles are produced. Thus for

nuclei in which Z = A/2, on average there will be an equal number of positive and negative

pions produced. This is a consequence of assuming isospin invariance.

Since mn and mπ are in general not whole numbers, the routine chooses m (the number

of emitted particles) from nearest integer values that sandwich mn or mπ. It does this at

a frequency that would reproduce the average particle multiplicity of mn,π. As there is no

data or theory that gives the width for the distribution of emitted particles about mn,π, we

have adopted this nearest integer procedure. This at least guarantees that we are getting

the correct average multiplicity for large samples.

The photon energy Eγ is split into Eγ = Ekin + Eint, where Ekin represents the amount

of energy that is converted into the nucleus’ kinetic energy and Eint represents the amount

of energy that excites the internal degrees of freedom of the target nucleus. Eint is sampled

from a uniform distribution from 0 to Eγ[17]. In the case where pions are emitted, Eint ≥
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FIG. 6: Primary neutron energy distribution for 11, 20, 90, and 270 GeV incoming muon kinetic

energy. The x-axis gives the energy of the outgoing neutrons.

m ·mµ, where m is the number of emitted pions. This relation is necessary so that energy

conservation is preserved. To compute the angles and energies of the outgoing particles we

first move to the center of mass (CM) frame where the target nucleus, after interaction with

the muon but before emitting any particles, is at rest. Here the initial energy of the nucleus

is MA + Eint. The directions of the m emitted particles are sampled isotropically, as well as

their momenta up to an unknown factor α. The direction and momentum of the residual

nucleus is chosen so that overall momentum conservation is preserved, up to the unknown

factor α. Note that the mass of the residual nucleus is Mres = MA − mMn for the case of

emitted neutrons (Mn is the nucleon mass), or Mres = MA for the case of emitted pions.

Energy conservation requires that

MA + Eint =

√√√√M2
res + α2

(∑
i

p2
i +

∑
i<j

pipjcos(θij)

)
+
∑

i

√
M2

n,π + α2p2
i ,

where θij represents the angle between momenta pi and pj and Mn,π is either the mass of

the pion or neutron, depending on which particle is emitted. A Newton-Raphson iteration

method is used to find the value of α which satisfies this equation. Typically only 5-10
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FIG. 7: Primary neutron angular distribution relative to incoming muon direction for 11, 20, 90,

and 270 GeV incoming muon kinetic energy.

iterations are needed to get an accuracy to 1×10−10. Having the momenta and energies of

the particles in the CM frame, the system is boosted to the lab frame using the boost factor

γ2 = 1 +

(
Ekin

MA + Eint

)2

+ 2
Ekin

MA + Eint

.

A linked list is made that stores the energies, angles, and momenta of each

of the emitted particles, including those of the residual nucleus. The routines

get energies angles pion() and get energies angles neutron() simply access the nth

element of the linked list to obtain these quantities. With each successive call to

scatter muon(), the linked list is deallocated before being intialized so as to eliminate

any possible memory leaks.
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FIG. 8: Primary pion energy distribution for 11, 20, 90, and 270 GeV incoming muon kinetic

energy.

IV. RESULTS

Figure 6 shows the energy distribution (normalized to one) of the primary neutrons pro-

duced by muon interactions off Carbon for various incoming muon kinetic energies. Note

the decrease in the distribution at small energies, which is not apparent if one includes sec-

ondary neutrons (see Fig.4 of Ref. [6]). Figure 7 shows the angular distribution (normalized

to one) of the primary neutrons produced from Carbon relative to the direction of the in-

coming muon for various incoming muon kinetic energies. As noted in Sect. III, the angular

distribution in the CM frame is uniform for cos(θ). The skewed distributions shown in Fig. 7

are due to the Lorentz boost to the lab frame.

Figures 8 and 9 show the analogous results for production of primary pions.

V. CONCLUSION

Neutron production due to cosmic muon spallation is a constant source of background

for long-dwell measurements of fissionable material. As such, it is important to understand
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FIG. 9: Primary pion angular distribution relative to incoming muon direction for 11, 20, 90, and

270 GeV incoming muon kinetic energy.

the different underlying physical processes that contribute to neutron production via muon

spallation, and their accompanying systematics. Due to the complicated interactions that

lead to secondary neutrons, however, a well established theory describing this phenomena is

not known. To this end, we have written a muon physics package to be used in conjunction

with existing Monte Carlo routines (written in f90). We have calulated neutron and pion

multiplicities, as well as energy and angular distributions of primary neutrons and pions.

Because the package was developed in-house, the various routines representing the different

physical processes can be easily ‘switched on’ or ‘switched off’. This allows for a large degree

of control over the code and its various components. This control was lacking in FLUKA.

A forthcoming technical report[16] will address the dependence of the calculated spectra on
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secondary processes.
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